

The Evolution of Energy

A brief history of energy highlighting significant milestones and inflection points.

For thousands of years, mankind has been adapting to new environments and creating new technology. Our ability to harness energy and create utility is a prime example. Throughout history, the world has undergone several significant energy transitions, from coal to nuclear power to natural gas. Today, we're seeing another transition in progress-the shift to renewable energy. Many experts believe this transition is critical for the long-term health of the planet and will ultimately drive economic growth.

Benefits of World Economies Going Green

Improved **Public** Health

Wood The Skinny: Wood, the primary source of energy for thousands of years, was used in: until the 1600s until the late 1700s The price of wood gradually increased as harvesting efforts were forced to move farther away from urban industrial centers. Key Stat: Advantages: Challenges:

Abundance and convenience prior

to the Industrial Revolution

Major Milestones:

primary fuel for heating

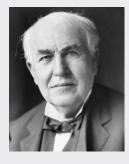
Urbanization drove wood prices higher as harvesting moved to more far-flung locations

of the world's primary renewable energy supply

used for steam in industries, trains and boats

Inflection Point:

Urbanization pushed wood prices higher as harvesting efforts moved to more far-flung locations. For the industrializing world, the shift from wood to coal brought enormous benefits. Expanding rail networks and steam ships transformed trade and offered average Americans greater mobility.


Source: U.S. Energy Information Administration, Food and Agriculture Organization

The Skinny:

The transition from wood to coal was gradual over time but accelerated in 1790 with the invention of the steam engine and its role in the Industrial Revolution.

In 1882, coal-powered steam engines that generated electricity were pioneered by Thomas Edison. Although coal use was once common in the industrial, transportation, residential and commercial sectors, today the main use of coal in the United States is to generate electricity.

Energy density, abundance, role in trade and utility in transportation

Key Stats:

B

Tons of coal produced by the United States annually for each of the last 15 years

Major Milestone:

Challenges:

Over time, rising prices, depleted resources, pollution and associated health risks posed challenges

of U.S. coal consumption is used for electric power

The coal industry reached peak employment with over 860,000 miners employed.

Inflection Points:

The price of coal quickly declined as adoption spread with the price per ton falling to \$3 in the 1850s from \$7 to \$10 in 1830s. The economic benefit of using coal as a preferred energy source became clear and U.S. coal consumption grew by more than 100 times in the next 50 years.

Pollution became an increasing concern as air quality around the world worsened. Rising costs of transportation, dwindling supply and deteriorating air quality led to the pursuit of a more efficient, more abundant and less dangerous source of energy.

Source: U.S. Energy Information Administration, Arcadia Publishing: Evolution of the Coal Industry in America

Nuclear

The Skinny:

Nuclear energy was touted as an alluring replacement to coal. Uranium is plentiful globally, cost-effective to mine and splitting atoms can create an unlimited amount of energy. Demand for nuclear energy boomed in the second half of the 20th century, with scores of power plants being built across the United States.

Advantages:

 ∞

Nearly unlimited supply, inexpensive to mine uranium, no greenhouse gases

Challenges:

Costly safety regulations, project delays, increased construction costs, radioactive waste

Key Stats: 58

Number of nuclear power plants in the United States, the most in the world

Major Milestone:

In the 1950s, Arco, Idaho becomes the first U.S. city to be powered by a nuclear reactor.

Inflection Point:

The transition to a society dependent on nuclear energy ultimately stalled in the aftermath of the Three Mile Island disaster. The meltdown released radioactive gases and discharge into the nearby community, racking up nearly \$1 billion of cleanup costs and large public outcry.

Source: U.S. Energy Information Administration

The Skinny:

In the late 1920s, improvements in the welding and metal sectors

0 %0

led to more efficient modes of transportation, which made natural gas commercially viable. Next, machines were invented that heated air and fuel to spin turbines that generated electricity, which pushed natural gas into the mainstream. Further adoption came with the invention of hydraulic fracturing or "fracking."

Abundant supply in the United States, cleanest fossil fuel, employs 1.2 million people

Major Milestones:

Costly infrastructure,

tiammable,

carbon emissions,

environmental risks

Challenges:

of the energy used by U.S. industry is natural gas

William Hart dug the first successful U.S. natural gas well in Fredonia, New York.

1885 Robert Bunsen's invention—the Bunsen's to use burner—opened vast new opportunities to use Robert Bunsen's invention—the Bunsen natural gas.

Inflection Point:

The widespread use of fracking and broad-based deregulation in the industry enabled the natural gas industry to boom, resulting in an industry-low LCOE that prompted utility companies to transition away from coal. By 2016, natural gas had surpassed coal as the United States' preferred source of energy.

Source: U.S. Energy Information Administration, American Public Gas Association

Levelized Cost of Electricity (LCOE)

LCOE calculates present value of the total cost of building and operating a power plant over an assumed lifetime.

Source: Corporate Finance Institute

Wind

The Skinny:

Early U.S. settlers built windmills for irrigation and home power generation. As the modern-day electrical grid developed, the use of wind declined. As the modern-day electrical grid developed, the use of wind declined. In the 1970s, the use of wind power generation saw a resurgence as a result of technological innovations, which drove down cost and improved efficiencies.

The base structure of these turbines is relatively small, enabling the farmer to continue to simultaneously grow crops or graze livestock on the land. The earnings from wind turbines provide a buffer to fluctuating commodity prices and are usually secured by long-term leases of 20 years or more.

Key Stats:

67%

decline in its levelized cost of energy (LCOE) since 2012 for offshore wind

Major Milestones:

1941 The Chicago wond's rail shows a stress and their wind turbine designs. The Chicago World's Fair showcases 15 windmill

1980 Ine first large (utility-a 2020

1978 Congress passes the Public Utility Regulatory Policies Act of 1978, which requires companies to buy a certain amount of electricity from renewable energy sources, including wind. The first large (utility-scale) wind farms are

1993 The National Wind Technology Center (NWTC) is built to be the nation's premier wind energy technology research facility.

Siemens launched the largest ever wind turbine, a 14-megawatt model with a 222-meter rotor diameter.

Inflection Points:

During the 1970s, soaring gas prices renewed interest in wind power and fueled more in-depth research of wind turbines. The rise of windsourced power benefited from economies of scale, with the LCOE declining by 71% between 2009 and 2020.

Consistent declines in the cost have driven rapid growth for winddevelopment projects and incentivized traditional farmland owners to

Lower (but improving) operating capacity

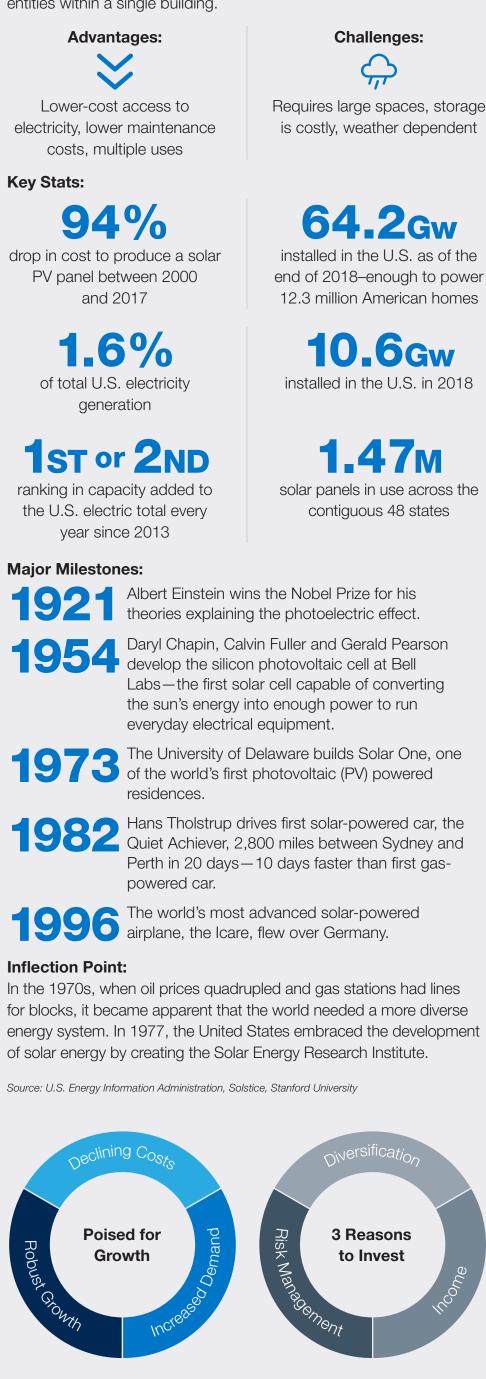
Recycling of materials used in turbines

7.3%

Wind power's share of total

U.S. energy generation

lease their land for wind turbines.


Source: U.S. Energy Information Administration, Office of Energy Efficiency & Renewable Energy

Solar

The Skinny:

Solar energy projects can be classified into three main segments: residential, commercial and utility. The adoption of solar panels by the residential community represents one of the fastest-growing segments in the industry as consumers opt for cheaper utility prices and a smaller carbon footprint. Similarly, commercial projects have included the use of solar energy on building rooftops. The electricity generated from these structures can be shared by multiple tenants or entities within a single building.

© 2021 All rights reserved. This report is intended for informational purposes only. All information provided and opinions expressed are subject to change without notice. The information and statistical data contained herein have been obtained from sources we believe to be reliable. No part of this report may be reproduced in any manner without the written permission of Oppenheimer Asset Management or any of its affiliates. This material is not a recommendation as defined in Regulation Best Interest adopted by the Securities and Exchange Commission. It is provided to you after you have received Form CRS, Regulation Best Interest disclosure and other materials

Investing in securities involves some risk and may result in loss of principal. Some of the information in this document may contain projections or other forward looking statements regarding future events or future financial performance of countries, markets or industries. Actual events or results may differ materially. 3472621.1